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Nonlinear Equations 

�• Formulation: 
�• Newton�’s Method �… 

which may not 
converge.  



Trust-region for nonlinear equations 

�• Model: 
�• Trust-region problem: 
�• Reduction ratio: 
�• Can use dogleg ! (with 

positive definite B)  



TR algorithm for nonlinear equtions 



Section 8: Constrained 
Optimization 
Mihai Anitescu, Stat 310 
Reference: Section 12 Nocedal and Wright 



8.1 INTRODUCTION IN 
CONSTRAINED OPTIMIZATION 



Notations 

�• Problem Formulation 

�• Feasible set 

�• Compact formulation 

  

min
x n f x( )  subject to 

ci x( ) = 0 i E

ci x( ) 0 i I

 
= x | ci x( ) = 0,i E; ci x( ) 0,i I{ }

minx f x( )  



Local  and Global Solutions 

�• Constraints make make the problem simpler 
since the search space is smaller.  

�• But it can also make things more complicated. 

�• Unconstrained problem has one minimum, 
constrained problem has MANY minima.  

min x2 +100( )2 + 0.01x1
2  subject to x2 cos x1 0



Types of Solutions 
�• Similar as the unconstrained case, except that we now 

restrict it to a neighborhood of the solution.  
�• Recall, we aim only for local solutions.  



Smoothness 
�• It is ESSENTIAL that the problem be formulated 

with smooth constraints and objective function (since 
we will take derivatives).  

�• Sometimes, the problem is just badly phrased. For 
example, when it is done in terms of max function. 
Sometimes the problem can be rephrased as a 
constrained problem with SMOOTH constrained 
functions.  

max f1 x( ), f2 x( ){ } a
f1 x( ) a

f2 x( ) a



Examples of max nonsmoothness 
removal 

�• In Constraints: 

�• In Optimization:  

x 1 = x1 + x2 1 max x1, x1{ }+max x2 , x2{ } 1
x1 x2 1, x1 x2 1, x1 + x2 1, x1 + x2 1

min f (x); f (x) = max x2 , x{ };
min t

subject to max x2 , x{ } t  

min t
subject to x2 t, x t

 



8.2 EXAMPLES 



Examples 

�• Single equality constraint (put in KKT form) 

�• Single inequality constraint (put in KKT form, 
point out complementarity relationship) 

�• Two inequality constraints (KKT, complementarity 
relationship, sign of the multiplier)  

min x1 + x2 subject to x1
2 + x2

2 2 = 0

min x1 + x2 subject to x1
2 + x2

2 2( ) 0

min x1 + x2 subject to x1
2 + x2

2 2( ) 0, x1 0



Multiplier Sign Example 

�• There are two solutions for the Lagrangian 
equation, but only one is the right.  



8.3 IMPLICIT FUNCTION 
THEOREM REVIEW 



Refresher (Marsden and Tromba) 







8.4 FIRST-ORDER 
OPTIMALITY CONDITIONS 
FOR NONLINEAR 
PROGRAMMING  



Inequality Constraints: Active Set 

�• One of the key differences with equality 
constraints. 

�• Definition at a feasible point x.   

  

min
x n f x( )  subject to 

ci x( ) = 0 i E

ci x( ) 0 i I

  x x( ) A x( ) = E i I ; ci x( ) = 0{ }



�• We need the equivalent of the �“Jacobian has full 
rank�” condition for the case with equality-only. 

�• This is called �“the constraint qualification�”. 
�• Intuition:  �“geometry of feasible set�”=�“algebra 

of feasible set�”    

�“Constraint Qualifications�” for 
inequality constraints 



Tangent and linearized cone 

�• Tangent Cone at x (can prove it is a cone)  

�• Linearized feasible direction set (EXPAND)  

�• Essence of constraint qualification at a point x 
(�“geometry=algebra�”):  

 
T x( ) = d zk{ } , zk x, tk{ } + ,tk 0, limk

zk x
tk

= d

  
F x( ) = d dT ci x( ) = 0,i E; dT ci x( ) 0,i A x( ) I{ } T x( ) F x( )

 T x( ) = F x( )



What are sufficient conditions for 
constraint qualification? 

�• The most common (and only one we will discuss 
in the class): the linear independence constraint 
qualification (LICQ).  

�• We say that LICQ holds at a point           if 
           has full row rank.  
�• How do we prove equality  of the cones ?  If 

LICQ holds, then, from IFT 

cA x( )

x

  

d F x( ) cA x( ) x t( )( ) = t cA x( )d > 0, 0 < t < ;

c
A x( ) x t( )( ) > 0;cA x( ) I x t( )( ) 0;cE x t( )( ) = 0 x t( ) d T x( )



8.4.1 OPTIMALITY 
CONDITIONS FOR EQUALITY 
CONSTRAINTS 



Constrained optimality 

Expand, use implicit function theorem. Jacobian full rank 



Constrained optimality 



Constrained optimality 

Expand: Implicit Functions Theorem 



Summary: Necessary Optimality 
Conditions 

�• First order:  

�• Second order necessary conditions.  

 xL x*, *( ) = 0

 xc x*( )w = 0 wT
xx
2 L x*, *( )w 0



Sufficient Optimality Conditions 

�• The point is a local minimum if LICQ and the 
following holds:  

�• Proof: By IFT, there is a change of variables 
such that  

�• The original problem can be phrased as 

 
(1) xL x*, *( ) = 0; (2) xc x*( )w = 0 > 0 wT

xx
2 L x*, *( )w w 2

  

u N 0( ) n ncu x u( ); x N x*( ),c x( ) = 0 u N 0( ); x = x u( )

xc x*( ) ux u( )
u=0

= 0; Z = ux u( )

minu f x u( )( )



Sufficient Optimality Conditions 

�• We can now piggy back on theory of 
unconstrained optimization, noting that. 

�• Then from theory of unconstrained optimization 
we have a local isolated minimum at 0 and thus the 

original problem at     . (following the local 
isomorphism above)   

  

u f x u( )( )
u=0

= xL x*, *( ) = 0;
uu
2 f x u( )( )

u=0
= ZT

xx
2 L x*, *( )Z 0; Z = ux u( )

x*



Another Essential Consequence 
�• If LICQ+ second-order conditions hold at the 

solution      , then the following matrix must be 
nonsingular (EXPAND). 

�• The system of nonlinear equations has an 
invertible Jacobian,  

x*

 

xx
2 L x*, *( ) xc x*( )

x
T c x*( ) 0

 

xL x*, *( )
c x*( )

= 0



8.4.2 FIRST-ORDER 
OPTIMALITY CONDITIONS 
FOR MIXED EQ AND INEQ 
CONSTRAINTS 



The Lagrangian 

�• Even in the general case, it has the same 
expression 

   
L x( ) = f x( ) ici x( )

i E A



First-Order Optimality Condition 
Theorem 

 
f x*( ) T

A x*( ) c
A x*( ) x

*( ) = 0 Multipliers are unique !!

Equivalent Form:  



Sketch of the Proof 

�• If        is a solution of the original problem, it is 
also a solution of the problem.   

�• From the optimality conditions of the problem 
with equality constraints, we must have (since 
LICQ holds) 

�• But I cannot yet tell by this argument 

x*

 
min f x( ) subject to c

A x*( ) x( ) = 0

 
i{ }i A x*( ) such that   f x*( ) i ci x

*( )
i A x*( )

= 0

i 0



Sketch of the Proof: The sign of the 
multiplier 

�• Assume now one multiplier has the �“wrong�” 
sign. That is 

�• Since LICQ holds, we can construct a feasible 
path that �“takes off�” from that constraint 
(inactive constraints do not matter locally) 

�•      

  j A x*( ) I , j < 0

  

c
A x*( ) x t( )( ) = tej x t( ) Define b = d

dt
x t( )t=0 cA x( )b = ej

d
dt
f x t( )( )t=0

= f x*( )T b = T
cA x( )

cA x( )b = j < 0

t1 > 0, f x t1( )( ) < f x 0( )( ) = f x*( ), CONTRADICTION!!



Strict Complementarity 

�• It is a notion that makes the problem look 
�“almost�” like an equality.  



8.5 SECOND-ORDER 
CONDITIONS 



Critical Cone 

�• The subset of the tangent space, where the 
objective function does not vary to first-order. 

�• The book definition.  

�• An even simpler equivalent definition.  

 
C x*, *( ) = w T x*( ) f x*( )T w = 0{ }



Rephrasing of the Critical Cone 

�• By investigating the definition 

�• In the case where strict complementarity holds, 
the cones has a MUCH simplex expression.  

  

w C x*, *( )
ci x

*( )T w = 0 i E

ci x
*( )T w = 0 i A x*( ) I i

* > 0

ci x
*( )T w 0 i A x*( ) I i

* = 0

 
w C x*, *( ) ci x

*( )w = 0 i A x*( )



Statement of the Second-Order 
Conditions 

�• How to prove this? In the case of Strict 
Complementarity the critical cone is the same as 
the problem constrained with equalities on 
active index.  

�• Result follows from equality-only case.  



Statement of second-order sufficient 
conditions 

�• How do we prove this? In the case of strict 
complementarity again from reduction to the equality 
case.  

 x
* = arg minx f x( )  subject to cA x( ) = 0



How to derive those conditions in 
the other case?  

�• Use the slacks to reduce the problem to one 
with equality constraints. 

�• Then, apply the conditions for equality 
constraints.   

�• I will assign it as homework.  

  

min
x Rn ,z RnI ,

f (x)

s.t. cE x( ) = 0

cI x( )
j

z j
2 = 0 j = 1,2,�…nI



Summary: Why should I care about 
Lagrange Multipliers?  

�• Because it makes the optimization problem in 
principle equivalent to a nonlinear equation. 

�• I can use concepts from nonlinear equations 
such as Newton�’s for the algorithmics.   

 

xL x*, *( )
cA x*( )

= 0; det
xx
2 L x*, *( ) xcA x*( )
x
T cA x*( ) 0

0


